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Abstract

The differential equation for dilute species transport next to a planar interface within the hydrodynamic boundary

layer is transformed into a differential equation for the diffusion boundary layer. This differential equation contains two

coefficients, which depend explicitly on the concentration profile. We show that these coefficients can be taken as iden-

tical constants, in a number of limiting cases. Using these constants, we show that this equation reproduces very well the

temporal and spatial profile of the diffusion boundary layer determined from numerical simulations in some more com-

plex intermediate cases. The final differential equation depends only on the diffusion coefficient and on local velocity

and velocity gradients next to the interface, and not explicitly on concentration. Therefore this equation can be used

to estimate the mass transfer coefficient from the local velocity profile when conditions are not fixed in space or time,

and especially in transient computational fluid dynamics calculations. It can also be used to estimate new correlations

for the mass transfer coefficient, in cases where the spatial velocity profile at the interface is known.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Mass transfer; Fluid mechanics; Simulation; Laminar flow; Boundary layer
1. Introduction

Computational fluid dynamics has become an essen-

tial tool for the study of any system involving heat or
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mass transfer, particularly for the optimisation of engi-

neering devices [1]. Heat and mass are exchanged at

the boundary between two fluid streams through the

so-called stagnant boundary layer, where the ultimate

cause of transport is diffusion [2]. Then transfer is univ-

ocally determined by the condition of equilibrium of the

fluxes at the interface.

/ ¼ D1
oc1
oz

����
z¼0

¼ D2
oc2
oz

����
z¼0

; ð1Þ
where Di indicates the diffusion coefficient in phase i, ci
the concentration in phase i, and z the co-ordinate per-

pendicular to the interface between the phases, z = 0

denoting the interface itself. In many practical cases
ed.
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Nomenclature

x, y, z orthogonal axes (m)

u, v, w velocity field along x, y, and z (m/s)

u0 fluid velocity at the interface z = 0 (m/s)

/ mass flux at the interface (kg/m2 s)

Di species diffusion coefficient in phase i (m2/s)

ci species concentration field in phase i (kg/m3)

c0 concentration field at position z = 0 (kg/m3)

c1 concentration field at position z =1 (kg/

m3)

~c reduced concentration field

k mass transfer coefficient (m/s)

ki mass transfer coefficient in phase i = 1, 2 (m/

s)

d boundary layer for mass transport (m)

di mass transport boundary layer in phase

i = 1, 2 (m)

Di distance between the interface and the centre

of the first computational cell normal to the

interface (m)

Re Reynolds number

Sc Schmidt number

Sh Sherwood number

sw wall shear stress at z = 0 (kg/m s2)

t time (s)

g = z/d reduced coordinate normal to the interface

C(n) complete gamma function

erf(x) error function
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one introduces the so-called mass transfer coefficient,

defined so that

/ ¼ kð�c2 � �c1Þ; ð2Þ

where �ci indicates now the average value of the concen-
tration in phase i, and we have omitted any equilibrium

partition coefficient for simplicity.

Whenever the computational mesh in a CFD model

is finer than the size of this diffusion boundary layer,

one can directly use the condition of equilibrium of

the flux (1) to determine the flux between the two phases.

However when the computational mesh is larger than

the diffusion boundary layer, one cannot resolve the

concentration gradient at the interface, and hence use

of a transfer coefficient becomes compulsory. The size

of this boundary layer depends essentially on the magni-

tude of the diffusion coefficient: a few millimetres or

more for mass transfer in gas phase, where

D � 10�5 m2/s; and a few microns for mass transfer in
the liquid phase, where D � 10�9 m2/s. Clearly most
cases involving mass transfer in a liquid require the

introduction of a mass transfer coefficient.

The estimation of this mass transfer coefficient con-

stitutes a difficult and recurrent problem in applications

of CFD [3,4]. Very generally, correlations derived from

known cases are introduced in the calculation. These

correlations are derived by solving explicitly for the spe-

cies concentration c, for given conditions of diffusion

and advection. There are many existing correlations

applying to a wide range of physical flow situations,

listed in different books and reviews [2]. In most cases

different flow situations require different forms of corre-

lations, as do different system geometry. Furthermore

these correlations describe the average situation in the

system, and not the local conditions. Finally they mostly

apply to steady-state cases, unsteady cases being much

more difficult to treat [5–7]. Therefore the use of such
correlations breaks down when treating a system where

flow conditions vary as a function of time.

It would be most convenient in these cases to define

the mass transfer coefficient from local conditions of

the flow in the computational cells bordering the inter-

face. Unfortunately, to the best of our knowledge no

such correlation exists. Since this mass transfer coeffi-

cient does not represent a real physical quantity, there

exists no elementary equation governing its behaviour.

However the definition of k shows that it only depends

on the value of concentration and its derivative at the

interface, that is, on local quantities, so that nothing pre-

vents k to be defined based on local conditions. Limiting

ourselves to the case of laminar flows close to a planar

interface, we show here that it is possible to construct

a local differential equation governing the evolution of

k, reproducing known average correlations in all limit-

ing cases. We argue that this differential equation has

a broader application and can be used to estimate k in

those cases, where no correlations exist, as an efficient

way to interpolate existing results.

Rather than working with k or its equivalent Sher-

wood number Sh, we chose to use as our primary vari-

able the size of boundary layer d, defined as d = D/k.

Indeed, small boundary layers such as encountered in

well-mixed systems result in mass transfer coefficients

tending to infinity, which is quite impractical in

computations.

In the next section we construct the differential equa-

tion for d based on a weak solution of the specie equation.
We determine the coefficients of this differential equation

from the analytical solution in a number of limiting cases.

In Section 3 we show that this equation also reproduces

correlations in some intermediate cases for which they

are known from previous studies, as well as in some spe-

cific numerical examples: this suggests its more general

applicability. Finally we conclude in Section 4.
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2. Boundary layer equation

2.1. Derivation

Consider a laminar flow next to a planar interface in

two dimensions, as depicted in Fig. 1. In the dilute limit,

a passive scalar quantity is advected by the flow and dif-

fuses according to

oc
ot

þ o

ox
ðucÞ þ o

oz
ðwcÞ ¼ D

o2c
oz2

þ D
o2c
ox2

; ð3Þ

where c is the concentration in scalar, u is the velocity in

the plane of the interface, w is the velocity perpendicular

to the interface, and D the specie diffusion coefficient.

Supposing further that axial diffusion is much smaller

than normal diffusion, that is

o2c
ox2

� o2c
oz2

; ð4Þ

we have

oc
ot

þ o

ox
ðucÞ þ o

oz
ðwcÞ ¼ D

o2c
oz2

: ð5Þ

Rather than the actual concentration profile, we can

use a dimensionless concentration profile

~c ¼ c� c1
c0 � c1

; ð6Þ

where c0 and c1 indicate the concentration profiles at

position z = 0 (at the interface) and z = infinity (deep

into the medium). This concentration profile is valid

for c05 c1 and D
Dt c0 ¼ D

Dt c1 ¼ 0. For c0 = c1 there is

no mass transfer at the interface so that d =1. Using
this dimensionless variable we have

o~c
ot

þ o

ox
ðu~cÞ þ o

oz
ðw~cÞ ¼ D

o2~c
oz2

; ð7Þ
Case (2): u0

Case (3): ∂ Case (4): 

c0

∞

Phase 2 

Phase 1 

z 
ax

is

x axis

∂ ∂
∂

Fig. 1. Local flow conditions next to the interface. Vectors

indicate the velocity field close to the interface. The case

number refers to the cases defined in Section 2.1.
with boundary conditions

~cðz ¼ 0Þ ¼ 1; ð8Þ

~cðz ¼ 1Þ ¼ 0: ð9Þ

The boundary layer d is defined as

1

d
¼ o~c

oz

����
����
z¼0

ð10Þ

Note that some definitions set the boundary layer from a

fixed value of c/(c0 � c1). Use of the above definition in

Eq. (10), however, rigorously defines the mass transfer

coefficient at the interface as the flux of specie through

the interface. A weak solution of Eq. (7) can be obtained

by integrating over the boundary layer:Z z¼dðx;tÞ

z¼0

o~c
ot
dzþ

Z z¼dðx;tÞ

z¼0

o

ox
ðu~cÞdzþ

Z z¼dðx;tÞ

z¼0

o

oz
ðw~cÞdz

¼
Z z¼dðx;tÞ

z¼0
D
o2~c
oz2
dz: ð11Þ

Use of Leibniz rule for the two left integrals and direct

integration for the two rightmost integrals give

o

ot

Z z¼dðx,tÞ

z¼0
~cdz� od

ot
~cjz¼d þ

o

ox

Z z¼dðx,tÞ

z¼0
ðu~cÞdz

� od
ox

ðu~cÞz¼d þ w~cjz¼d � w~cjz¼0

¼ D
o~c
oz

����
z¼d

� o~c
oz

����
z¼0

� �
: ð12Þ

We limit ourselves to a class of problem where mass

transfer across the interface is much faster than any

change of the velocity profile at the interface. Consider-

ing that w(0) = 0 and use of the variable g = z/d gives

o

ot
d
Z g¼1

g¼0
~cdg

� �
� od

ot
~cg¼1 þ

o

ox
d
Z g¼1

g¼0
ðu~cÞdg

� �

� od
ox

ðu~cÞg¼1 þ w~cjz¼d ¼
D
d

1þ o~c
og

����
g¼1

 !
: ð13Þ

We expect the reduced variable c(g) to be independent of
time and distance, as this dependence is entirely taken

up by the diffusion boundary layer d from which g is de-
fined. On the other hand, integrals involving velocity will

not be independent of distance. Hence

od
ot

Z g¼1

g¼0
~cdg � ~cg¼1

� �

þ od
ox

Z g¼1

g¼0
ðu~cÞdg � ðu~cÞg¼1

� �

þ d
o

ox

Z g¼1

g¼0
ðu~cÞdg

� �
þ w~cjz¼d

¼ D
d

1þ o~c
og

����
g¼1

 !
: ð14Þ
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In the third term, only the velocity u should depend di-

rectly on x, which allows us to write

od
ot

Z g¼1

g¼0
~cdg�~cg¼1

� �

þ od
ox

Z g¼1

g¼0
ðu~cÞdg� ðu~cÞg¼1

� �

þ d
Z g¼1

g¼0

ou
ox

~cdgþw~cjz¼d

¼ D
d
1þ o~c

og

����
g¼1

 !
: ð15Þ

Since, from the continuity equation, ou
ox ¼ � ow

oz , we can

write

od
ot

Z g¼1

g¼0
~cdg � ~cg¼1

� �

þ od
ox

Z g¼1

g¼0
ðu~cÞdjg � ðu~cÞg¼1

� �

� d
Z g¼1

g¼0

ow
oz

~cdg þ w~cjz¼d ¼
D
d

1þ o~c
og

����
g¼1

 !
: ð16Þ

This equation is general, for the dilute solution. We can

make further progress by making some assumptions on

the actual velocity profile within the hydrodynamic

boundary layer. As indicated in introduction, our aim

is to derive a master equation for d, for use in cases
where we can describe the hydrodynamic boundary

layer, but not the diffusion boundary layer. Accordingly,

we assume that the flow is locally linear, so that it is de-

scribed by the following parameters:

• horizontal velocity at the surface u0;

• gradient of horizontal velocity ou
oz (shear);

• gradient of vertical velocity ow
oz (strain).

The vertical velocity at d can then be approximated
as

wjz¼d �
ow
oz

d: ð17Þ

Furthermore, ow
oz should not depend on g within the

bounds of the integral, so that we can write

od
ot

Z g¼1

g¼0
~cdg � ~cg¼1

� �

þ od
ox

Z g¼1

g¼0
ðu~cÞdg � ðu~cÞg¼1

� �

þ ow
oz

d ~cjg¼1 �
Z g¼1

g¼0
~cdg

� �

¼ D
d

1þ o~c
og

����
g¼1

 !
; ð18Þ

which can also be expressed in function of d2:
od2

ot
þ od2

ox

R g¼1
g¼0 ðu~cÞdg � ðu~cÞg¼1

h i
R g¼1

g¼0 ~cdg � ~cg¼1

h i

¼ 2 ow
oz

d2 þ D
2 1þ o~c

og jg¼1
� 

R g¼1
g¼0 ~cdg � ~cg¼1

h i : ð19Þ

We further suppose that u(z) can be written as

uðx; t; zÞ ¼ u0ðx; tÞ þ
ou
oz

ðx; tÞz: ð20Þ

Then

od2

ot
þ od2

ox
u0 þ

ou
oz

d

R g¼1
g¼0 ~cgdg � ~cg¼1R g¼1
g¼0 ~cdg � ~cg¼1

" #

¼ 2 ow
oz

d2 þ D
2 1þ o~c

og

���
g¼1

� �
R g¼1

g¼0 ~cdg � ~cg¼1

h i ; ð21Þ

or, put in a simpler form

od2

ot
þ od2

ox
u0 þ B

ou
oz

d

� �
¼ 2 ow

oz
d2 þ AD; ð22Þ

where

B ¼
R g¼1

g¼0 ~cgdg � ~cg¼1R g¼1
g¼0 ~cdg � ~cg¼1

; A ¼
2 1þ o~c

og

���
g¼1

� �
R g¼1

g¼0 ~cdg � ~cg¼1
: ð23Þ

Any further progress must make use of an explicit formu-

lation of the concentration profile. Clearly, in general the

coefficientsA and Bwill be dependent on the actual prob-

lem, as they involve explicitly the concentration profile.

We will now look at several examples in limiting cases,

and show that in these cases we can use constant coeffi-

cients, to form a single equation valid in all these limiting

cases. These limiting cases are the simplest ones, as they

each involve a minimum number of terms. However they

are not the only ones, where the exact solution is known:

we show in the next section that the general equation

found from the simplest limiting cases also works in less

simple situations. The different cases considered here are

depicted in Fig. 1 (ot indicates the unsteady term):

1. ot 6¼ 0; u0 ¼ 0; ou
oz ¼ 0; ow

oz ¼ 0: unsteady diffusion with-
out convection;

2. ot ¼ 0; u0 6¼ 0; ou
oz ¼ 0; ow

oz ¼ 0: steady-state flowing

surface without shear not strain;

3. ot 6¼ 0; u0 ¼ 0; ou
oz 6¼ 0; ow

oz ¼ 0: steady-state flow with a
constant shear;

4. ot 6¼ 0; u0 ¼ 0; ou
oz ¼ 0; ow

oz 6¼ 0: steady-state flow with

constant strain. Note that in this case, the existence

of a velocity gradient along z for w leads necessarily

to a non-zero surface velocity u0 for an incompres-

sible flow.
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To derive the differential equation we assume that the

velocity profile is known and fixed in space and time.

This implicitly supposes that the diffusion boundary

layer resides completely within the hydrodynamic

boundary layer. Furthermore, unless stated otherwise,

we always assume that all velocities are constant along

the surface.

2.2. Unsteady diffusion

The simplest correlation to be found is for a purely

diffusive system, without convection. The differential

equation for concentration in one dimension reads

o~c
ot

¼ D
o2~c
oz2

: ð24Þ

In this well-known case, the concentration profile is

an error function [2]:

~cðz; tÞ ¼ 1� erf zffiffiffiffiffiffiffiffi
4Dt

p
� �

; ð25Þ

and boundary layer increases with time as

d ¼
ffiffiffiffiffiffiffiffi
pDt

p
: ð26Þ

The coefficient A can be calculated by two equivalent

ways: By transforming Eq. (26) into a differential equa-

tion governing d2, we find

od2

ot
¼ pD; ð27Þ

which shows that the coefficient A in this limiting case

should be A = p. Alternatively, we can directly evaluate
the integrals of Eq. (23), which results in the same value.

2.3. Steady-state flowing surface without shear nor strain

In the case of a uniform flow at a constant velocity u0
next to the surface, we have

u0
o~c
ox

¼ D
o2~c
oz2

: ð28Þ

This case is clearly the same as the previous one, from

which we get concentration profile and boundary layer.

By the same transformation, we have

u0
od2

ox
¼ pD; ð29Þ

which corresponds to the reduction of Eq. (22) to this

case, again with the coefficient A = p.
2.4. Flow with a constant shear and no surface velocity

We now have the following equation:

ou
oz

z
o~c
ox

¼ D
o2~c
oz2

: ð30Þ
This is known as the Lévêque problem [2,8]. The con-

centration profile can be written as

~c zð Þ ¼
C 1

3
; ou
oz

z3

9Dx

� 
C 1

3

� � ; ð31Þ

where C(n) is the complete gamma function. The bound-
ary layer then is

d ¼ Dx
3

� �1=3
ou
oz

� ��1=3

C
1

3

� �
: ð32Þ

From this it follows that the boundary layer should fol-

low the equation:

B
ou
oz

d
od2

ox
¼ AD; ð33Þ

where A = p, B ¼ 9p
2C3ð1=3Þ ¼ 0:735 and the initial condi-

tion d(x = 0) = 0.

2.5. Constant strain without shear

Let us first assume in this case that the diffusion is

negligible. The governing equation for c reads

u0
o~c
ox

þ ow
oz

z
o~c
oz

¼ 0: ð34Þ

Since ow
oz 6¼ 0, u0 cannot be constant along the surface for

an incompressible flow, so we shall not make this

assumption. The solution of Eq. (34) along z is a simple

exponential profile:

~cðx; zÞ ¼ 1� exp az; ð35Þ

where a can depend on x. Replacing in Eq. (34) shows

that a needs to be the solution of:

u0
oa
ox

þ ow
oz

a ¼ 0; ð36Þ

from which follows, since d = 1/a:

u0
od2

ox
¼ 2 ow

oz
d2; ð37Þ

without any restriction on the initial conditions. This is

indeed the restriction of Eq. (22) to this particular case.

When including the diffusion term in this profile, we

now have

u0
o~c
ox

þ ow
oz

z
o~c
oz

¼ D
o
2~c
oz2

; ð38Þ

If u0 does not depend on z, the resulting profile along z is

an error function

~cðx; zÞ ¼ erf a xð Þz½  ð39Þ

Inserting in Eq. (38) gives the resulting equation for a

u0
oa
ox

þ ow
oz

a ¼ �2Da3; ð40Þ
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From the profile we see that the boundary layer is

d ¼
ffiffiffi
p

p
=2a, and hence d follows the differential equation

u0
od2

ox
¼ 2 ow

oz
d2 þ pD; ð41Þ

which is indeed the reduction of Eq. (22) in this particu-

lar case, with again the coefficient A = p.

2.6. Total differential equation

In the preceding subsections, we have shown that the

c-dependent coefficients of Eq. (22) are actually identical

constants in several limiting cases of interests. From

there we argue that taking these as constant in interme-

diate cases will allow us to find the solution for the dif-

fusion boundary layer in these intermediate cases. Hence

we write the general equation as

od2

ot
þ u0 þ 0:735

ou
oz

d

� �
od2

ox
¼ pDþ 2 ow

oz
d2: ð42Þ

This 2D equation can of course be straightforwardly

extended to 3D by adding the term od2

oy .
3. Validations

3.1. Analytical validations

By construction, Eq. (42) allows reproducing limiting

cases of the boundary layer in some determined flow sit-

uations. From there we argue that it will also be valid to

estimate the boundary layer size in other cases, that are

either intermediate or combinations of the limiting cases

defined above. In this section we show that it is indeed

so, in some intermediate cases where the solution is

known.

3.1.1. Developing flow above a flat plate

Eq. (29) was derived in the particular case of a flow

with a constant velocity gradient, that does not depend

on x. However this is not a general case. In particular,

the shear rate for a developing flow above a flat plate

with a constant velocity u1 at infinity is [2]:

sw ¼ l
ou
oz

����
z¼0

¼ 0:332 qu1x
l

� ��1=2
1

2
qu21: ð43Þ

At the interface the horizontal velocity u0 is zero, so

that both w and ow
oz are equal to zero. Hence Eq. (22) re-

duces to

0:735
ou
oz

d
od2

ox
¼ pD: ð44Þ

Introducing the velocity profile given by Eq. (43) into

Eq. (42) and solving for d, with the initial condition
d(x = 0) = 0, gives
d ¼ 2p
0:244

� �1=3 l
qu31

� �1=6
D1=3x1=2: ð45Þ

In terms of Sherwood, Reynolds and Schmidt num-

bers this solution can be written as

Shx ¼
x
d
¼ 0:339Re1=2Sc1=3: ð46Þ

This is indeed the known correlation for this case [2].

3.1.2. Shear flow with a flowing surface

Here we assume again a shear flow but add a surface

velocity u0 which gives the following equation for diffu-

sion in the dilute limit:

u0 þ
ou
oz

z
� �

o~c
ox

¼ D
o2~c
oz2

: ð47Þ

We suppose that the velocities do not depend on x.

The solution in this case is given by Beek and Bakker

[3], but has no simple analytical form. Using our present

treatment, Eq. (42) reduces to

u0 þ 0:735
ou
oz

d

� �
od2

ox
¼ pD; ð48Þ

from which we get, with the initial condition d(x = 0) = 0

u0d
2 þ 2

3
B
ou
oz

d3 ¼ pDx: ð49Þ

We can write d = f(x) in the limiting cases of large

and small d. For d large, that is, 2B
3u0

ou
oz d � 1, we have

d3 � 3
2

pDx
B

ou
oz

� ��1

� 1þ 3
2

u0
B

ou
oz

� ��1
2B
3pDx

ou
oz

� �1=3( )�1

: ð50Þ

In terms of a Taylor expansion for the mass transfer

coefficient k, this equation can be rewritten as

k � 0:539 ou
oz

D2

x

� �1=3
þ 0:197 D

x2
ou
oz

� ��1
 !1=3

; ð51Þ

which is indeed the correlation written by Beek and Bak-

ker [3] for this limit. For d small, that is, 2B
3u0

ou
oz d � 1,

then

d2 � pDx
u0

1þ 2
3

B
u0

ou
oz

� �
pDx
u0

� ��1=2
( )�1

; ð52Þ

that is,

k � u0D
px

� �1=2
þ 0:246 D

u0

ou
oz

� �
: ð53Þ

Again we find the correlation as obtained by Beek

and Bakker [3] for this limiting case.
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3.2. Numerical validations

In order to complement the analytical validations

presented above, we have performed a number of com-

parisons between the boundary layer determined by

CFD in some intermediate cases, and the predictions

of Eq. (42). We would like to stress that these validations

are intended to demonstrate the interest of our present

treatment, but do not constitute an exhaustive study

on its range of applicability, which has yet to be per-

formed. We have constructed a simple 2-dimensional

box measuring 2 · 5 m as sketched in Fig. 2, equipped

with a Cartesian computational mesh mz · mx. The

x = 0 plane has a constant concentration c = 1, the bot-

tom z = 0 plane has a fixed concentration c = 0 with no

surface resistance, the plane x = Lx is an outlet with no

defined concentration, and the plane z = Lz is adiabatic.

Hence we expect the development of a diffusion bound-

ary layer at the bottom z = 0 side. To ensure that the

mesh captures this diffusion layer, we have used an

increasingly fine mesh next to z = 0, and a large diffusion

coefficient D = 10�3 m2/s. The velocity field is fixed and

constant in time, but may vary as a function of x and

z in a prescribed way, so as to reproduce conditions ex-

pected in the hydrodynamic boundary layer. In all cases

we assumed an incompressible flow so that ou/ox = �ow/

oz. All calculations were performed using the STAR

code from Computational Dynamics, Ltd. [9]. The

boundary layer d is determined from the simulation as

d ¼ c0 � c1
ðoc=ozÞz¼0

: ð54Þ

Eq. (42) was integrated numerically using a totally

implicit integration scheme, with the boundary condi-

tion d = 0 at x = 0.
Fig. 2. Sketch of the computational model used for numerical

validations. The model includes 200 elements along x and 100

along z, where the density of elements away from the interface

z = 0 decreases so that two successive elements have a ratio of

size equal to 1.1.
3.2.1. Steady-state

Six different cases noted A to F have been considered,

and compared to the solution of Eq. (42). The latter was

either solved analytically or numerically, depending on

the case.

A. u(x,z) = u0 + cx, w(x,z) = �cz.
This case corresponds to a flowing surface with a

constant strain but no shear. We used u0 = 0.1,

c = 0.1. The solution in this case is analytical,

assuming d(x = 0) = 0:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDx u0 þ

c
2
x

� 
ðu0 þ cxÞ�1

r
: ð55Þ

B. u(x,z) = u0 � cx, w(x,z) = cz.
This case is the same as A, but the velocity gradients

point in an opposite direction. In this case we used

u0 = 0.6, c = 0.1, which ensures that the velocity vec-
tors are always oriented towards x > 0. The analyt-

ical solution is the same as for case A.

C. u(x,z) = u0 + az + cx, w(x,z) = �cz.
In this case we add a constant shear. The term

including ou/oz is multiplied by d3, while the term
involving u0 is only multiplied by d2. Since the
boundary layer is expected to be small, ou

oz has to

be large compared to u0 for this velocity gradient

to have any influence on the resulting boundary

layer: therefore we used here u0 = 0.1, c = 0.1,
a = 10.0.

D. uðx; zÞ ¼ u0 � b cos px;wðx; zÞ ¼ �bpz sinpx.
This case is similar to A, except that the surface

velocity and the strain depend on x. We used

u0 = 0.1, b = 0.05.

E. uðx; zÞ ¼ u0 þ az� b cos px, wðx; zÞ ¼ �bpz sin px.
This case is similar to d, with addition of a constant

shear. We used u0 = 0.1, b = 0.05, a = 10.0.

F. This constitutes a �real-life� test. The system is trans-
formed by adding two vertical wedges on the top

surface, as described in Fig. 2. The velocity and

velocity gradients are determined by computation

on the same grid, with the following conditions: at

inlet (x = 0), u = 0.1 m/s; the upper surface is a no-

slip wall, and the bottom surface a slip wall. The

liquid is assumed to be water: hence the Schmidt

number in this simulation is very low, Sc � 10�3.
Eq. (42) is integrated numerically, using the resulting

velocity profile.

Fig. 3 shows an excellent agreement between the

computations and integration of Eq. (42). For the sim-

plest cases A–C the agreement is almost exact. For more

complex cases, and especially for the �real-life� case F,
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Eq. (15) predicts correctly both the order of magnitude

and the variations of the boundary layer thickness. This

is especially remarkable, since in the latter case the mag-

nitude of the diffusion boundary layer is of the same

order as or even larger than that of the hydrodynamic

boundary layer.

Although this figure only shows cases when the

agreement is good, we should note that this is not always

the case. In particular, Eq. (42) was derived assuming

that the velocity profile can be completely characterised

by only three terms, that is, u0ðxÞ; ouoz ðxÞ, and ow
oz ðxÞ. We

have noted that, whenever the variation the vertical

velocity can not be described by ow
oz only over the size

of the boundary layer, Eq. (42) gives results that may

be qualitatively different from the simulations.

3.2.2. Transient

Transient diffusion was simulated on the same grid as

for the steady state, for 20 s with a time-step of 0.1 s. In

all cases the velocity profile was fixed in time, so that we

only solved for species transport. Eq. (42) was solved

numerically. The same five cases A–E presented in the

preceding paragraph in steady-state were used for tran-

sient validations. Fig. 4 presents the resulting time evo-

lution of the boundary layer size, from simulation

(points) and from Eq. (42) (curves), for the specific value

x = 4. Again we find an excellent agreement between the

predictions of simulations and those of Eq. (42).

3.3. Implementation

Eq. (42) can be used within a CFD calculation to esti-

mate mass transfer coefficients, in all cases where the

computational mesh is fine enough to resolve the hydro-
dynamic boundary layer, but too coarse to resolve the

diffusion boundary layer. In this case the user should

first solve for the momentum equation, then use the cor-

responding velocity field to estimate d by integrating Eq.
(42) at the interface, and finally solve for the concentra-

tion. Although the aim of this article is not to present a

complete study utilising this method, we would like to

offer some practical suggestions as to its practical imple-

mentation. Indeed, the diffusion flux at an interface be-

tween phases 1 and 2 is computed using an equation

similar, but not identical to, Eq. (2)

/ ¼ kðc2 � c1Þ; ð56Þ

where the difference comes from the fact that c1 and c2
are evaluated at the computational cells neighbouring

the interface rather as average over the computational

domain. The mass transfer coefficient k can be separated

in two contributions, one from each side of the interface

1

k
¼ 1

k1
þ 1

k2
: ð57Þ

If the computational mesh is smaller than the diffu-

sion boundary layer, then Eq. (1) leads to the following

mass transfer coefficient (for example on side 1)

k1 ¼
D1
D1

; ð58Þ

where D1 is the diffusion coefficient on side 1 and D1 the
distance between the centre of the first computational

cell and the interface. On the other hand, if the compu-

tational mesh is larger than the boundary layer, then by

definition of the boundary layer d1 the mass transfer
coefficient becomes
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k1 ¼
D1
d1

; ð59Þ

where the boundary layer d1 is estimated using Eq. (42).
This suggests that the following expression for the mass

transfer coefficient should be used in practice

k1 ¼
D1

maxðD1; d1Þ
: ð60Þ

Eq. (60) clearly shows that large values of the bound-

ary layer, in practice, will not affect the mass transfer at

the interface. This is very satisfying, as Eq. (42) is only

valid for small d., while nothing prevents Eq. (42) to re-
sult in an infinite boundary layer. In practice, it is there-

fore necessary to set an upper limit to the increase of d.
While this upper limit does not affect the mass transfer,

it might affect the later evolution of d as a function of
time, and therefore is not well defined. However, some

preliminary tests performed using either D or the model
size L as the upper limit on d did not show any major
difference in the general mass transfer.
4. Conclusion

We have written a differential equation governing the

behaviour of the diffusion boundary layer size d for a
laminar flow next to a planar interface. This equation

presents two coefficients, which are dependent on the ac-

tual concentration profile. We show that these coeffi-

cients can be taken as identical constant, for a number

of relevant limiting cases. When applying the resulting

differential equation with constant coefficients to other

cases, which are either slightly different or combinations

of the cases for which it has been derived, the value of d
from known correlations is reproduced. This equation

also reproduces the temporal and spatial dependence

of d computed numerically for a number of different
time-independent velocity profiles. Clearly the fact that

this equation gives good results in these cases does not

impart any general validity, or guaranty it will work in

any other cases. However since it allows, by construc-

tion, to find all limiting cases of interest, and since inter-

mediate cases are also reproduced, we argue that it

provides an accurate and efficient mean to estimate the

size of the boundary layer in any intermediate case.

This differential equation is intended primarily to be

used in computational fluid dynamics calculations,

where it can provide an efficient mean to estimate the

mass transfer coefficient at a liquid/liquid or liquid/gas

interface from knowledge of the local velocity profile

in adjacent cells. It can also be used to construct new

correlations Sh = f(Re,Sc) for different physical cases
where the flow profile is known. Eq. (30) presents a typ-

ical example for such a correlation.

We have limited this study to the mass transfer coef-

ficient next to a planar interface. However this equation

should be applicable for other surface geometries, by re-

interpreting x and z as local coordinates in the plane of

the interface and perpendicular to the interface. It might

be also possible to determine a similar equation for the

heat transfer coefficient. However our equation has been

written for simple flow situations, and makes therefore

implicitly use of the fact that the size of diffusion bound-

ary layer is much smaller than the hydrodynamic bound-

ary layer for most liquids, that is, Sc� 1. We would

advise caution whenever the sizes of the boundary layers

are not so disparate.
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